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1. 

With modern trends in engineering, machine components are designed to be as light as
possible to minimize both the material and the operating costs. In addition, these
components are driven at high speeds to satisfy the fast production demands. Hence, it
is not uncommon to have a power transmission shaft operating above the first few critical
speeds of its structure. Although such a shaft may operate safely in the steady state,
damaging transient resonance can occur during acceleration to the super-critical operating
speed. A simple active control technique has been demonstrated earlier to avoid transient
resonance by varying the critical frequencies, as the shaft accelerates through them [1]. This
technique was investigated further in the authors’ previous work [2].

Previous work concentrated on the use of a midspan support which could be either
present (activated) or not present (de-activated). Presence of the midspan additional
support, of course, would stiffen the flexible shaft and shift its critical frequencies higher.
By having a choice of two different frequency response functions, a control strategy could
be established. The frequency response function was switched instantaneously (by
activating and de-activating the midspan support) to select the smaller response at any
given frequency of excitation. Hence, the possibility of the traversing speed of the
transmission shaft to coincide with a critical speed could be avoided. However, this
switching support could cause large vibrations when it clamped the shaft during activation.
In addition, the best location for a switching support was usually different for each critical
frequency to be passed during acceleration. The switching support could be placed at only
one location. This limitation results in a compromise to attenuate vibrations at more than
one critical speed. The best compromise location for a switching support allowed
acceleration to 7·5v1, between v2 and v3, where vi refers to the ith critical frequency. A
sliding support is proposed here to move to a different location to bypass each critical
speed and make acceleration to beyond 40v1(0v5) possible. The suggested configuration
is shown in Figure 1.

2.1. Frequency response
This study deals with the acceleration of a simplified shaft model of length, L=1·65 m,

stiffness, EI=65 Nm2, and mass per unit length, rA=0·576 kg/m, as shown in Figure 1.
A 0·50 kg mass (representing a power transmission component such as a gear with a
comparable mass to that of the shaft’s) with imbalance mo=0·001 kgm is located at the
point LM /L=0·60. This shaft was modelled with ten Euler beam [3] elements with a
numerical simulation program in FORTRAN. The boundary conditions due to permanent
and sliding supports are assumed to be simple support. The finite elements approximation
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Figure 1. Schematic of the flexible beam with a sliding bearing.

yielded five natural frequencies to within 3% of the example cases compiled in reference
[4]. Solution of the eigenvalue problem was then used to produce the dynamic response
of the flexible beam by the standard modal superposition technique.

Figure 2(a) shows the frequency response of the displacement of the simply supported
flexible beam subject to excitation of ‘‘mov2 sin (vt)’’ at the point LM /L=0·60. The new
displacement responses with an additional bearing in three different positions at
LS /L=0·15(r), Ls /L=0·35 (r) and LS /L=0·55 (+) are shown in Figure 2(b). If, for
any given excitation speed, the support location with the minimum displacement response
can be chosen, the effective displacement response will be the minimum of the three
functions, shown by shading. This effective response is significantly smaller compared to
any of the individual displacement responses, so the shaft with the sliding bearing should
be capable of acceleration from zero speed to 40v1, just below v5, with effectively no
resonance. This assertion will be verified next by simulating the transient response of the
flexible beam model.

It should be noted in Figure 2(b) that this shaded area has been picked up to deliberately
avoid an excessive number of actuations between different support locations. Otherwise,
a smaller response could be indicated in this figure, as in the case of around 150 rad/s.
Starting with the LS /L=0·55 (+), switching over to LS /L=0·15 (r) around 120 rad/s,
and switching back to LS /L=0·55 around 135 rad/s, would enable catching the trough
of the LS /L=0·55 case. However, the price of this marginally smaller response would be
two additional actuations.

Figure 2. Displacement response for the (a) simply supported shaft and (b) shaft with an added sliding
bearing at LS /L=0.15 (r), 0·35 (e) and 0·55 (+).
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2.2. Transient solution
The displacement spectra in Figure 2 are the steady state response of the system. Power

transmission shafts, on the other hand, are made out of common metals with very light
inherent damping. Thus, for any accelerating shaft, the transient vibrations will likely play
a significant role. For this reason, a computer program was prepared to numerically predict
the transient response of the system during acceleration. Cases were analysed by assuming
that the angular speed of the excitation, v, followed a constant slope (acceleration) from
rest to the operating speed. The numerical predictions were obtained, assuming the
excitation speed was constant over each time step, by standard mode superposition. 5000
time steps were used from rest to the operating speed. This number was found to be large
enough for convergence with ample safety margin.

In general, the slower a shaft accelerates through a resonance, the more evident the
resonance effects will be. For cases with swift acceleration to 40v1 over time less than 40T1

(T1 represents the fundamental period), the shaft did not resonate during acceleration.
Rapid acceleration to avoid resonance is well known but not often feasible. The example
case to demonstrate the axially sliding bearing technique is acceleration from rest to 40v1

over a time period 400T1, or 100 s.
Figure 3(a) shows the transverse vibration of the point LM /L=0·6 on the uncontrolled

system, a simply supported shaft, during acceleration from rest to 40v1. The peaks due

Figure 3. Transverse vibration history of the flexible beam at LM /L=0.60 with (a) no midspan support;
stationary midspan support LS /L at (b) 0·15, (c) 0·35, (d) 0·55 and (e) sliding support.
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to resonance for the first four critical frequencies are apparent and the maximum amplitude
of vibration is about 2 mm. Figures 3(b), 3(c) and 3(d) show the transverse vibration of
the shaft at the point LM /L=0·6 with a ‘‘stationary’’ additional support at the points
LS /L=0·15, 0·35, and 0·55, respectively. It can be seen that, for each case, the shaft
has large amplitudes of vibration as it resonates around its critical speeds. The timing
and the magnitude of the resonance response are different for each case since the shaft
stiffness is a function of the support location. The maximum amplitude is 2·8 mm with
LS /L=0·15 and 5·2 mm with LS /L=0·55. The best location for a stationary bearing
is at the point LS /L=0·35, which yields a maximum amplitude of about 2·5 mm, but
the addition of a stationary support at all three locations actually increases the vibration
instead of reducing it. Figure 3(e) shows the transverse vibration of the shaft with a
support sliding ‘‘instantaneously’’ between the two discrete points LS /L=0·15 and
LS /L=0·55. The location of the sliding bearing is LS /L=0·55 for the ranges (0, 100)
rad/s, (300, 464) rad/s, and (861, 1000) rad/s and LS/L=0·15 for the rest of the time,
shown as the staggered step function with its scale on the right. It can be seen in Figure 2(b)
that the intermediate support location, LS /L=0·35, is unnecessary since the displacement
response for LS /L=0·35 is never significantly lower than those of the LS /L=0·15 and
LS /L=0·55.

The last actuation at 861 rad/s, could have been as early as 800 rad/s due to the third
resonance of the case with LS /L=0·15. However, this particular peak is quite sharp
resulting in a very short duration over which the transient resonance takes place. In
addition, there is always some delay between the peak response instant and the instant
when the frequency of excitation matches the critical frequency. Hence, a delayed actuation
could easily be tolerated.

For any shaft speed, the location for the sliding bearing is the location with minimum
displacement response. Small jumps in the vibration amplitude can be seen at the times
t=10, t=46 and t=86 s. This occurs because the stiffness is rapidly decreased as the
sliding support is moved instantaneously from LS /L=0·55 to LS /L=0·15. This can be
explained by considering an analogous single-degree-of-freedom (SDOF) system with
variable stiffness. If, during vibration, the spring of the SDOF was suddenly unstiffened,
the mass would have to travel farther to store its kinetic energy as the potential energy
in the spring. Thus a jump in vibration amplitude related to the kinetic energy would be
expected. For this reason the switches in support location were activated when the shaft
had low transverse velocity (and therefore low transverse kinetic energy). Since the
instantaneous repositioning of the additional support is adopted here for computational
ease, and since this repositioning would have to take place gradually in practice, the sudden
jumps in Figure 3(e) are not considered to be a serious drawback of the suggested
technique. It can be seen in Figure 3(e) that the vibration amplitudes with the active sliding
support have been sharply reduced. Because the sliding support moved to minimize the
steady state amplitude with respect to frequency, resonance was never encountered; as
such, no resonance peaks are evident. The maximum amplitude of less than 0·5 mm
represents a decrease of 75% from the initial simply supported case.

2.3. Determining support locations
The slider locations to produce the results presented in section 2.2 were determined by

trial and error. A procedure is suggested here to reduce the number of trials, by examining
the normalized mode shapes of the simply supported flexible beam.

Placing the additional support at a point with a large relative amplitude for the nth mode
will have a significant stiffening effect on the nth critical speed. On the other hand, sliding
the support to a point on the shaft where there is a node will have no effect on displacing
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Figure 4. Mode shapes of the simply supported beam. X/L represents the axial distance from the left-hand-side
permanent support: —, mode 1; ---, mode 2; . . . . , mode 3; — —, mode 4.

the corresponding critical frequency. Hence, referring to the first four mode shapes of the
simply supported flexible beam shown in Figure 4, the addition of a support at LS /L=0·55
has a much greater effect on the first mode than a support at LS /L=0·15 or at
LS /L=0·35. This may be verified with the spectral information in Figure 2(b).

For resonance free operation around the nth unstiffened critical frequency, a good
support location will be the one with considerable modal amplitude for the nth mode but
relatively low modal amplitude for the preceding mode. It is desirable for the preceding
mode to have low relative amplitude at the potential support location to minimize
stiffening the preceding mode and raising the preceding critical frequency. If the preceding
mode is stiffened too much, it may interfere and raise the displacement response around
the nth critical frequency. Figure 4 demonstrates this as the second mode has relatively
high amplitude near the point LS /L=0·35. Examining Figure 2(b), it can be seen that the
addition of a support at LS /L=0·35 has stiffened the second natural frequency so that
it is very close to the unstiffened third natural frequency.

3. 

It appears then that a sliding bearing can be successfully used to avoid resonance when
accelerating to super-critical speeds, demonstrated past the first four critical frequencies
to 40v1. Moving the sliding bearing smoothly should avoid the sudden amplitude jumps
and impacts associated with the on/off type switching supports discussed earlier.
Recommended future work includes the investigation of continuously variable bearing
location, instead of discrete locations (instantaneous relocation of the slider bearing).
Future work on optimising the slider bearing location versus frequency function would be
welcome and experimental verification is also recommended to confirm the veracity of the
computational results.
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